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Introduction 
 

We consider universal prediction of binary sequences, where the criterion is 

the minimum number of prediction errors. The simplest case of this problem in the 

probabilistic setting is when the data is generated by an unknown Bernoulli source 

with, say, P(1)=p and so the goal is to make the expected number of errors close to 

min{Np,N(1-p)} where N is the sequence length. In the deterministic, individual 

sequence, setting, the goal is to approach min{N0,N1) where N0 = N-N1 is the number 

of zeros in the sequence. In the probabilistic setting this goal is essentially achieved 

within a constant number (that depends on p, but independent of N) by a majority 

predictor that counts at each time the number of zeros and ones observed so far, and 

then predicts the value that has the highest count. In the deterministic setting, the 

optimal number of errors is attained within a O(N
1/2

) term by a majority predictor 

whose decision is randomized when the difference between the counts is less than 

O(N
1/2

) . In any case, even in this simple problem the optimal universal predictor 

requires an infinite state predictor that uses an unbounded counter. See, e.g., [1,2] for 

further discussion on universal prediction of binary sequences. 

 

 It is interesting to explore the performance of the universal predictor under 

finite memory constraints. The finite memory constraints may come up due to 

implementation efficiency requirements. In addition, when the sequence behavior is 

non-stationary, a finite memory predictor which can forget the past and adapt faster to 

the new statistics is more suitable and has a better prediction performance than the 

infinite state predictor. 

 

 We present and analyze specifically in this work two finite memory predictors: 

 

1. A predictor that uses a saturated counter.  

2. A predictor that uses a finite past time window.  

   

The analysis is performed for the Bernoulli case, and for individual sequences. 

We explicitly provide non-asymptotic results and we try to point out the effect of the 

memory size M and the interplay between M and the sequence length N. We 

distinguish in the analysis between the case where the initial counter state is at the 

origin (i.e. balanced between zeros and ones) and the case where the counter starts at 

another state. The latter case refers to the non-stationary scenario where the predictor 

initially is tuned to the past behavior. As will be seen, in this case increasing M may 

result in a poorer predictor, and there will be an optimal value of M as a function of N.  
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Main Results: 

1. Asymptotic Performance in the Probabilistic Bernoulli Case 

 

Consider a Bernoulli source with P(1)=p. Suppose we use a deterministic M-

state machine where in each state we predict either one or zero with probability 1. We 

partition the states into two sets, one for predicting 1 and the other for 0 . Let the 

probabilities of the sets be denoted: 

 

 Pr( )0   , Pr( )1  , Pr( ) Pr( ) 0 1 1   

 

Thus, the mean of the fraction of correct predictions is given by: 
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We use this relation to find the asymptotic mean fraction of correct predictions 

for the analyzed predictors. In the expression below it is assumed that p>1/2 

(symmetric expressions exist for p<1/2, while for p=1/2 any predictor makes errors 

half of the time). First, recall that results in [3] determine the optimal performance 

that can be achieved by any M state predictor: 

 

Pr ( )Theory

M
p

p

0 1

1

1
1
















  

 

Theory

M

M

p
p

p

p

p p
p

p
 
















  











2 1

1
1

2 1
1

1

1

( )   

 

 

Now, our analysis of the saturated counter predictor, with M states leads to: 
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The asymptotic mean fraction of correct predictions for the finite past-time 

window predictor, with a window size k is given by: 
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Note that the number of states for the finite window predictor is M=2
K
. Thus, 

it performs much worse than the saturated counter with the same number of states. 

The finite window predictor can be approximated, however, by a predictor with M=-

k+1 states, in which each state corresponds to, say, the number of ones in the finite 

window. As the window is shifted the predictor state can be updated probabilistically, 

as in [4]. Even with this smaller number of states, the finite window predictor is worse 

than the saturated counter predictor with the same number of states. 

 

2. Non-asymptotic Performance in the Probabilistic Bernoulli Case 

 

We have developed general expressions for finite time analysis of a predictor 

with finite number of states, in the probabilistic setting. This analysis follows by 

realizing that the predictor’s states progress is governed by a Markov chain, whose 

transition probabilities depends on p. In a deterministic finite state predictor there are 

the two sets of states, defined above, corresponding to the two possible predictions. 

This Markov chain analysis can determine the probability of these two sets, as a 

function of time and the initial state probabilities.  

 

The Saturated Counter Predictor: 

 

Consider, first, the saturated counter predictor. In the non-stationary scenario 

we partition the data into segments, of size N, where we assume that p is constant 

along the segment. The initial predictor state, however, is determined by the previous 

segment. Thus for the saturated counter, the initial state probability should be given by 

 

 0 1 2 0 0 0 1 2 / , ,...., ,...., , /  

 

which mean that we have equal probability for the polarity of p in the previous 

segment, implying that the predictor is at one of the extreme states with equal 

probability at the beginning of the new segment. 

 

Under this assumption we get that the mean fraction of correct predictions, for 

a segment of size N is given by (up to lower order term) 
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where p>1/2, and q=1-p. In other words:  
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The expression above show the loss over the optimal fraction p, as a function 

of M and N. We see that by increasing M the loss over the optimal fraction may not 

decrease necessarily. We can find the value of M that minimize the loss in the 

expression above: 
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Substituting this value, we get that the approximated mean fraction of prediction 

errors for this optimal memory size is given by: 
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Note that the standard analysis of the saturated counter corresponds to the a 

scenario where the predictor is initialized at the balanced point. This may correspond 

to a case where if the data is non-stationary the predictor knows that the statistics has 

been changed and it resets its counts. In this case it can be shown for large M and          

p >1/2> q  that the mean fraction of prediction errors is given by : 
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We see that the optimal memory in this case is infinite, i.e., increasing the memory 

improves performance. There are two terms in the loss over the optimal fraction: The 

term that is exponential in M follows since we use a finite memory. The 1/N follows 

from the finite segment time. 
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The Finite Past-time Window Predictor: 

 

In this analysis the window size is k. The interesting case for analyzing the 

non-stationary scenario is when the initial statistics are at some extreme point. For that 

we assumed that with probability half the previous k-segment was all zeros, and with 

probability half it was all ones . 

 

Here we assume again that p>1/2>q=1-p. In the analysis we distinguish 

between the probability of correct prediction at time i which is less or equal k the 

window size, and time i>k. In the latter case, the probability of correct prediction is 

the same for all i>k, and is given by 
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We can also come up with an expression that sums all the mean fractions of correct 

prediction for i=0,...,k, given by: 
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Thus, for a sequence of finite length N , we get that the average mean fraction of 

correct predictions is given by 
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For large k we get : 
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or : 
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We can now find, as before, the optimal window size, that minimize the loss over 

over the optimal fraction p. We get : 
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that is, for large N : 
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The optimal fraction of correct prediction is then: 
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We see again that in the non-stationary scenario, where the predictor has to 

“forget” the effects of the past, there is an optimal memory, or window size of        

O(ln N). This leads to a loss of O(lnN/N) of prediction errors, over the optimal 

performance. Note that when the predictor is initialized properly, i.e., we can reset the 

predictor whenever the statistics changes, increasing the memory, or the window size, 

improves the prediction performance, and as was shown in many previous results (see 

e.g. [2]) the loss over the optimal performance is O(1/N). 

 

 

 

 

3. Saturated Counter with Finite Memory for Individual Sequences  

 

We first recall that for individual sequences, where the universal predictor 

should perform well for any possible sequence, the predictor must be randomized. 

Otherwise, for each predictor there exists a sequence, the inverse of the prediction 

sequence, for which the predictor makes only errors. Also, the optimal rate in which 

the goal of attaining a fraction of correct prediction max{N0,N1) can be achieved is 

given by 
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for large N. 

 

In this section we analyze the saturated counter, and we denote by k the 

number of states, assuming that k is odd. The states will be labeled as -(k-1)/2 ... 0 ... 

(k+1)/2 . The predictor state moves up when 1 is received and moves down for 0. The 

predictor is randomized and we denote by pI the probability that we predict 1 and state 
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Saturated Counter with Zero Initial Condition: 

 

We begin by analyzing the predictor whose initial state is 0, corresponding to 

the case where we can reset the counter before prediction when the data behavior 

changes. We also assume that 
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sequence for prediction starts from the origin with a zigzag pattern. The expected 
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by: 
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where the sequence is partitioned into three segments : zigzag, raised counts and 

saturated count. We can now find the optimal pI that maximizes the correct 

predictions. It turns out that the maximal value is achieved when  p p pi i i  1 12*   , 
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In the analysis we have to distinguish between the two cases : 
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p
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Consider first the case where saturation occurs. We get after some analysis that the 

fraction of correct predictions (which will depend on N1 but also on p1 
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In the second case we get after some analysis: 
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We can now find the optimal p1  and calculate the resulting fraction of correct 

prediction. It turns out that optimality is achieved in the first case, with the value 
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This requires that the number of states must satisfy: 
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There is no need to increase the memory beyond what is required for saturation, so the 

optimal choice is k N N  2 2 11( )  and the optimal fraction of correct prediction 

is given by: 
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Saturated Counter with Worst Case Initial Condition 

 

The worst case occurs when the predictor starts with some extreme case, and 

that is not tuned to the sequence empirical counts. In this case the predictor should 

adapt to the changing behavior. As will be seen, large memory, i.e., a large number of 

states, can make this task difficult, resulting in poorer prediction performance. 

 

Schematically we have: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and we assume N1 >N-N1 . We get after some calculations that : 
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As above, the optimal randomization is linear in the counts: 
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Again, the analysis can proceed by considering the two cases where saturation either 

occurs or does not occur along the sequence. In the first case where 
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Clearly the optimal value of  p1   is the minimum value p
k1
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1
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
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Now the optimal value of k  is :    k N N
* ( )  2 11  and so the mean fraction 

of prediction errors is given by: 
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Interestingly, an analysis of the second case leads to the same results, meaning 

that the number of states should be chosen so saturation is exactly achieved at the 

point where the predictor becomes non-random. 

 

 

Summary: 

 
 We consider prediction with finite memory. Such predictors are useful for 

practical reasons. In addition, in case the sequence behavior changes, the finite, or 

even small memory makes the predictor more flexible to adapt to the changing 

statistics. The analysis was performed in the stochastic setting and in the individual 

sequence setting.    

 

 The main conclusions are: 

 

The optimal memory size is O(ln N) where N is the segment length, in the stochastic 

setting, in non-stationary scenario. 

 

The optimal memory size is O(N
1/2

) in the individual setting. 

 

The saturated counter is preferable over the finite window predictor. 
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